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Abstract. Infinitely many lines of zero thickness may be adsorbed onto a plane without 
overlap,  a n d  i t  is shown that the number of lines adsorbed should scale a5 where i 
is the number of adsorption trials per unit area of surface.  This is confirmed by numerical 
simulation. The  adsorption of ellipses with major and  minor  axes Za, 26 respectively, is 
also studied. The  area coverage B approaches its maximum value Q,m.,h as  ??“ as  i- x, 
where a is typicall} f. As 6 / a  decreases from unity, Om.,% first increases to a maximum 
balue 0.58*0.01 when b =0.5, and  then decreases, a feature not noted in prekious work. 

1. Introduction 

Random sequential adsorption has been studied as a model for the adsorption of a 
monolayer of proteins onto a surface (Feder 1980). This adsorption is irreversible on 
some substrates (e.g. glass), and since the proteins d o  not stick to one another, only 
a single monolayer of non-overlapping proteins is adsorbed. For a review, see MacRit- 
chie ( 1978). As adsorption proceeds, so the remaining unoccupied surface decreases, 
inhibiting further adsorption. Eventually all spaces sufficiently large to accept a protein 
are filled, and  no further adsorption can occur. This is sometimes known as the 
‘jamming limit’. 

The problem may be set in an arbitrary n-dimensional space. In  one dimension, 
lines of unit length are sequentially placed at  random on a longer line (of length L >> l ) ,  
such that no overlap occurs. Eventually all the remaining unoccupied spaces are too 
short for further adsorption to be possible. This is known as the ‘parking problem’, 
and  represents cars (of identical length) parking against the side of the road. Exact 
analytic results are available in this case (reviewed by Feder 1980). 

Two-dimensional work has relied largely on computer simulations. The proteins 
are represented by identical circular discs, which are dropped one at a time, at random, 
onto the surface. Only those discs which d o  not overlap any previously adsorbed discs 
are themselves adsorbed. Discs which are not adsorbed are immediately removed, and  
the next trial commences. The maximum area coverage e,,, = 0.547, and Feder (1980) 
found that the area coverage 6 approaches this value as 

where the time variable t counts the number of trials. The theoretical basis for this 
time dependence was established by Pomeau (1980) and Swendsen (1981). 

In  this paper we consider the two-dimensional adsorption of lines (or of ellipses), 
rather than circular discs. The mctivation for this work came originally from simulations 
of the motion of lines on a plane. Such simulations require an  initial configuration, 
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which was obtained by random sequential adsorption ( R S A ) .  I t  is perhaps appropriate 
to warn the reader that it is far from clear that RSA is an appropriate algorithm for 
generating such configurations. The rate of adsorption decreases throughout the 
adsorption process. While we shall see that arbitrarily high number densities of lines 
may be obtained, it is clear that for shapes with a non-zero area the maximum coverage 
Omax generated by RSA may be well below that of maximum close packing (which for 
discs is 0.91). The coverage could be increased by allowing motion of the particles 
after adsorption, so that small open spaces could combine into larger spaces. However, 
the final stages of adsorption would proceed exceedingly slowly, especially if the 
motion of previously adsorbed particles was uncorrelated with the attempts to adsorb 
new particles. ( I f  the system was in thermal equilibrium, the rate of adsorption would 
be related to the chemical potential, as discussed by Widom (1965) and by Eppenga 
and Frenkel (1984).) Moreover, although the configuration obtained by RSA is disor- 
dered, this does not necessarily reduce the time required for a simulation to forget the 
choice of initial configuration below the time required if the initial configuration is 
based on a regular array. The radial distribution function g ( r )  generated by RSA is 
not the same as the equilibrium distribution function of a hard-disc fluid (Widom 
1966, Feder 1980). RSA leads to logarithmic divergence of g ( r )  for particles close to 
contact: very rapid motion can occur at the start of a simulation if soft inter-particle 
repulsions are present. 

In section 2 we present results for the kinetics of adsorption of lines of zero 
thickness, together with a simple model. In section 3 we extend this study to the 
adsorption of ellipses. Talbot et a1 (1989) have recently shown that the asymptote (1) 
for coverage at long times does not hold when the discs are replaced by ellipses with 
major and minor axes 2a and 26, respectively. This makes extrapolation of numerical 
simulations to the limit Omdy somewhat more problematic. We shall discuss simulations 
which approach very close to the jamming limit, and we shall show that as b / a  decreases 
from unity, Om,, first increases to a maximum value 0.584 * 0.01 when b = 0.5, and then 
decreases. 

2. Adsorption of lines of zero thickness 

We consider first lines of length 2a and of zero thickness, dropped onto a plane. 
Figure 1 shows 228 such lines which have landed on a square of side 10a after lo4 
trials. The first few lines cdn fall at random. Later lines are forced to lie approximately 
parallel to these firsr lines, in order to prevent overlap. We see in figure 1 that there 
are domains, of typical size 2a, in which the lines are approximately parallel. 

Since the lines have zero thickness, the jamming limit is never reached. The rate 
at which lines are adsx-bed may be studied by considering a single ordered domain 
consisting of lines parallel to the x-axis at a typical spacing ha K ' ,  where n is the 
number density of the lines. The domain is bounded by adjacent domains, and thus 
lies within -a  - h < x < a + h. We now attempt to add another line, with centre (xo, yo) 
and orientation eo, within a single gap of width h. The probability that yo and Bo 
permit this is proportional to h', whilst the probability that -h  < xo < h introduces an 
additional factor h. There are h-'  gaps within the domain, and hence dnldr ,  the rate 
of adsorption per unit area, is proportional to h' i.e. to K 2 .  Integration leads to 

n oc I C '  '. 
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Figure 1. 228 lines of length 2a adsorbed on a square of side 10a after I O 4  trials. 

Ten independent numerical simulations were performed to test this. In each, 640 000 
lines were dropped onto a square of side L = 20a. We non-dimensionalise area by a 2 ,  
and adopt a scaled time variable f, related to the number of attempts to adsorb, N, 
by f = Nu'/ L'. Figure 2 shows results for the non-dimensional number-density 6 as 
a function of ?, averaged over the 10 trials. A least-squares fit of results for 6 > 3 to 
the form 6 = Ai" gives a = 0.331 and A = 0.493. Forcing a = 1/3 gives A = 0.486. 

If the centre of the ith rod is at r , ,  with orientation e,, then we expect that 10, - e,/ << 
if rII = lr, - 'JI << a. Figure 3 shows (cos'( 8, - e,)) as a function of i = r z I / a .  It decreases 
from 1 (parallel lines) when i<< 1 to 0.5 (random orientations) when i>> 1, and we see 

Figure 2. The non-dimensional number-density n̂  as a function of ?, the number of attempts 
to adsorb per unit area. 
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Figure 3. (cos2( 8, - 8 , ) )  as a function of the separation r '=  r , , / a ,  for lines at i= 1600. 

1 . 0 - 1  
. I  

I 

0 1 
r 

Figure 4. The radial pair  distribution function g ( r )  for lines. Full curve :  i= 1600; broken 
curve: i= 200. 

that the ordered domains are approximately of size 2a.  Figure 4 shows the two- 
dimensional radial pair distribution function g(  r ) ,  defined such that when the number 
density of lines is n,,, the expected number of lines to be found within a circle of radius 
r from the centre of a given line is no s(, g (  r ) 2 m  dr. The logarithmic divergence usually 
found at  small separations at the jamming limit (Pomeau 1980, Swendsen 1981) cannot 
be attained, since the jamming limit is never reached. 

3. Adsorption of ellipses 

In section 2 we saw that an  infinite number of lines may be adsorbed onto a surface 
without overlap. Each line has zero surface area, so that at any finite time the coverage 
8 = 0. The particles in any real system are likely to have a finite area, and  we therefore 
consider the adsorption of ellipses (major axis 2a, minor axis 2b) .  It is clear that there 
will now be a maximum packing number density nmdxr which will be large when 
b / a  << 1, and  which will decrease as b / a  + 1. However, it is far from clear how the 
area coverage Omdx = rabn,,, will vary as a function of b / a .  
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Swendsen (1981) gave a simple argument to explain the kinetics of adsorption of 
discs, and  the root time behaviour (1) has been successfully used by Hinrichsen et a1 
(1986) and others to extrapolate numerical simulations to the limit of an  infinite number 
of trials. However, Swendsen's arguments break down when the adsorbed particles 
are no longer circular. This case has been recently discussed by Talbot et a1 (1989), 
and there is no need to repeat the arguments they present. A straightforward extension 
of the analysis leads to a prediction that the area coverage 6 increases to its limiting 
value Omdx as 

t". B r - l  3 6 - 6m,, - 

This hypothesis was tested by numerical simulations on ellipses of aspect ratio 1 > b / a  > 
0.2. The ellipses were dropped onto a square, usually of side 20&!a, and ten indepen- 
dent trials were performed. Periodic boundary conditions were applied at the edges 
of the square. Random numbers were generated by the F O R T R A N  function rand 
available on a Sun, and  the algorithm of Viellard-Baron (1972) was used to check for 
overlap. When b/  a was small, the number density of ellipses eventually became large, 
and  for b / a  C 0.4 the target area was reduced to a square of side 20a. For b / a  c 0.3 
the number of independent trials was reduced to 5 ,  each with 4 x lo7 attempts to adsorb. 

Figure 5 shows the area coverage 6, after averaging over the independent trials, 
plotted against ? - I J . ' .  We see a good straight line over a large portion of the curve. 
The results of a least-squares fit to a function of the form 6 = A+ BtC" depend on the 
range of values of t over which the fit is made. At small times the asymptotic behaviour 
has not yet been attained, while at large times the area coverage increases in a series 
of widely separated discrete jumps, because of the finite size of the simulation. There 
is evidence that cy approaches values smaller than 0.3 as b / a  + 0, but the results are 
not sufficiently strong to confirm the observations of Talbot et a1 of a definite departure 
of cy from the predicted value of i. Because of these uncertainties, the simulations 
were performed on rather small systems. Final coverages were close to maximum, so 
that errors introduced by extrapolation to an  infinite number of trials were reduced: 

Figure 5. The area coverage 8 as  a function of the scaled time variable Aspect ratios 
b / a  ( a )  0.2, ( b )  0.25, ( c l  0.3. i d )  0.4, ( e )  0.5. The broken lines show the least-squares 
straight line fit for I O 3 <  ?< 10'. 
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this, of course, had the disadvantage of increasing the errors due to the finite size and 
periodic boundaries. 

Figure 6 shows the limiting area coverage O m a x  as a function of the aspect ratio 
b / a .  The error bars indicate the standard deviation of the 10 independent trials. 
Experiments were performed to test that varying the size of the square did not affect 
the results, which still lay within the error bars. The extrapolation to the jamming 
limit was performed by means of a least-squares fit with the exponent cy set equal to 
f .  However, the simulations finished sufficiently close to the jamming limit that 
extrapolation as or t - '  ' led to area coverages which lay within the error bars of 
figure 6. For discs, the value Om,, = 0.547 * 0.014 agrees with published values (see 
Hinrichsen et al 1986), but the bounds on the error are much poorer than have been 
established previously. At an  aspect ratio b / a  = 0.2, the value e,,,, = 0.542 + 0.003 
obtained by Talbot et a1 lies within the error bars. The statistical error decreases 
slightly at higher aspect ratios, since the total number of adsorbed ellipses increases 
in this limit. The most striking feature of figure 6 is the maximum which occurs at an 
aspect ratio of about 0.5. This is a novel result. Although Talbot et a1 do  not in general 
report results for Om,, (0, in their notation), it is not unlikely (from their table 1) that 
they obtained a similar maximum. 

0 6 0 1  

t 
2 
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Figure 6. The maximum area coverage Om,,x, as  a function of the aspect ratio b / a .  The 
error bars indicate the standard deviation of the independent trials. 

We have chosen to work with b / a  S 1, but it is clear that O,,,(b/a) = O,,,(a/b). 
This might suggest that e,,, should be stationary at b / a  = 1. However, we see in figure 
6 that the slope dO,,,/d(b/a) = -0.15 as b / a  approaches 1 from below. 

It is not obvious why Om,, should attain a maximum when b / a  -0.5. For the 
reasons explained in section 1, there is no relation between this system and one which 
is at thermal equilibrium, such as that discussed by Wadati and Isihara (1972). 

In  figure 6 we see that Om,, decreases as b / a  + 0 i.e. in the limit as the ellipses 
approach the lines of zero thickness discussed in section 2. Clearly Om,, is bounded 
below by zero, but at present it is not known whether e,,, + 0 as b / a  + 0. 
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